Tool to view an unprecedented view of brain cell activity – Tech Explorist

First-ever seeing brain activity on such a massive scale.
How learning and memory occur is still a mystery.
Now, to resolve this mystery, Johns Hopkins Medicine scientists have created a system to track millions of connections among brain cells in mice. They track it simultaneously and when the animals’ whiskers are tweaked which is an indicator for learning.
Researchers say the new tool gives an unprecedented view of brain cell activity in a synapse. Synapse is a tiny space between two brain cells, where molecules and chemicals are passed back and forth.
“It was science fiction to be able to image nearly every synapse in the brain and watch a change in behavior,” says Richard Huganir, Ph.D., Bloomberg Distinguished Professor of Neuroscience and Psychological and Brain Sciences at The Johns Hopkins University and director of the Department of Neuroscience at the Johns Hopkins University School of Medicine.
A summary of the research was published online first Oct. 18 and in its final form on Nov. 25 in the journal eLife.
The researchers never thought they’d be able to see brain activity on such a massive scale. Before developing the tool, they said that their ability to see brain cell activity was like looking up in the night sky with bare eyes and witnessing billions of stars. “It’s like we can see and track each of the stars at the same time” now, says Austin Graves, Ph.D. instructor of neuroscience at the Johns Hopkin University School of Medicine.
The space between brain cells, or neurons, is incredibly tiny. It’s less than a micron, almost about a tenth of the width of a human hair. Within these junctions between neurons is a highway of passing molecules and proteins — mainly sodium and calcium and transferring from one neuron to another.
When neurotransmitters pass across a synapse and land on a neuron, they activate an AMPA glutamate receptor. AMPA-type glutamate receptors (AMPARs) are crucial molecules to study to understand the function and dynamics of the nervous system. AMPARs mediate the majority of fast excitatory synaptic transmission in the mammalian brain. Their regulation is regarded as a key mechanism underlying long-lasting changes in synaptic efficacy that give rise to learning and memory.
“These receptors are the functional machinery of language between neurons,” says Graves.
Huganir and other scientists have shown that synapses and their receptors are key locations for learning in the brain. It’s where memories are encoded, they say.
To study how synapses operate, scientists customarily culture samples of brain cells in the laboratory to screen for increases or decreases in proteins made by the cells. They also examine subsets of neurons in various brain regions. Still, scientists had not previously imagined synapses in the entire brain on this scale, say the researchers.
For the research, the scientists genetically engineered mice by inserting the GRIA1 gene into the DNA, producing a glowing green tag on all AMPA glutamate proteins. When neurons amp up their signaling, they have more AMPA glutamate proteins, and the green signal gets brighter.
Since AMPA glutamate receptors are prevalent, the researchers pinpoint nearly all excitatory neurons in the mouse brain, which are more likely to send signals to other neurons instead of blocking them.
Then, the researchers tweaked a whisker on each mouse and used high-powered microscopes to track which synapses glowed green and the brightness of the signal. They found about 600,000 glowing synapses and indications that the brightness of the green signal corresponded to the strength of the AMPA glutamate receptor’s response.
Huganir says the new system generates mind-boggling amounts of data. So, the researchers worked with computational scientists in the Johns Hopkins Department of Biomedical Engineering to develop artificial intelligence and machine learning techniques to train and validate algorithms that automatically detect all of the glowing synapses and how they change over time with experience and learning.
Their current work is a proof-of-principle study that shows the capabilities of this synaptic imaging tool, say the researchers. Other scientists have asked to use genetically engineered mice in their studies.
The researchers also plan to use the tool to study other mouse behaviors, learning, and memory and examine how synapses change under certain conditions, such as aging, Alzheimer’s Disease, and autism.
The research was supported by the National Institutes of Health’s National Institute on Aging and National Institute of Mental Health (R21 AG063193, R01 MH123212, K99 MH124920) and a Schmidt Science Nascent Innovation Grant.
Journal Reference
Over 95,000 people subscribe to our newsletter.
Tech Explorist publishes the latest researches and discoveries in science, health, the environment, technology, and more from leading universities, scientific journals, and research organizations.

© Copyright – Tech Explorist

source

Share:

More Posts

Market Research

Pulse Surveys

Turn feedback into action

Our survey platform makes it easy to measure and understand feedback so you can drive growth and innovation

Pulse Handshak

Pulse Handshak

Collaborative online survey tool for the market research industry. Remote assisted surveying just like face-to-face interviews. Here interviewers can talk to the respondent over the web-console without the need for any other communication channel and share the same Q're with responses and click actions.

Pulse FE

Pulse FE

Pulse Field Expert or Pulse FE is the main platform for both offline and online survey at softofficepro.com. It is robust and used by hundreds of clients over tens of years with millions of responses. Do it once Q're and deploy on both offline devices (android) and online forms makes it a great cost effective platform for any kind of responses

Pulse Ultimate

Pulse Ultimate

Pulse Ultimate is targeted for tracking studies and retail audits. An offline survey system offering extreme field control including processes like data quality check, back-check, rework, comparison with previous wave data etc. helps to get the best results on a day-to-day basis

Pulse LS

Pulse LS

Use a managed Limesurvey and our expertise for creating complex forms and token based user management. Use optional mailing system to send survey invitation to each participant and track progress of the response status. Industry standard SPSS / R output supported