Stem Cell Therapy Engineered To Treat Aggressive Brain Cancer – Technology Networks

We’ve updated our Privacy Policy to make it clearer how we use your personal data.
We use cookies to provide you with a better experience. You can read our Cookie Policy here.
Complete the form below and we will email you a PDF version of “Stem Cell Therapy Engineered To Treat Aggressive Brain Cancer”
Glioblastomas (GBMs) are highly aggressive cancerous tumors of the brain and spinal cord. Brain cancers like GBM are challenging to treat because many cancer therapeutics cannot pass through the blood-brain barrier, and more than 90 percent of GBM tumors return after being surgically removed, despite surgery and subsequent chemo- and radiation therapy being the most successful way to treat the disease. In a new study led by investigators at Brigham and Women’s Hospital and Harvard Medical School, scientists devised a novel therapeutic method for treating GBMs post-surgery by using stem cells taken from healthy donors engineered to attack GBM-specific tumor cells. This strategy demonstrated profound efficacy in preclinical models of GBM, with 100 percent of mice living over 90 days after treatment. Results are published in Nature Communications.

“This is the first study to our knowledge that identifies target receptors on tumor cells prior to initiating therapy, and using biodegradable, gel-encapsulated, ‘off-the-shelf’ engineered stem cell based therapy after GBM tumor surgery,” said Khalid Shah, MS, PhD, director of the Center for Stem Cell and Translational Immunotherapy (CSTI)  and the vice chair of research in the Department of Neurosurgery at the Brigham and faculty at Harvard Medical School and Harvard Stem Cell Institute (HSCI). “In the future, we will be applying this strategy to promptly identify target receptors after one receives a GBM diagnosis, then administer a gel-encapsulated, off-the-shelf, engineered stem cell therapeutic from a pre-made reservoir.”

Many cell-based therapies for cancer are derived from a patient’s own stem cells or immune cells. However, in a disease like GBM, most patients undergo surgery in the first week after receiving their diagnosis due to the disease’s rapid progression, granting little time to develop therapeutics from their own cell types. Instead, scientists developed a novel approach to use allogenic stem cells, or cells from healthy individuals, so that the remedy is readily available to administer immediately the time of surgery. Shah and colleagues evaluated the efficacy of several capsules that carry the stem-cell therapeutic in the brain and found a biodegradable hydrogel capsule to successfully transport the treatment without being washed away by cerebrospinal fluid.

Researchers first identified special receptors coined “death receptors” on circulating tumor cells (CTC) — or cancer cells in the bloodstream — using a genetic biomarker commonly expressed on tumor cells. Once identified, they took bifunctional l stem cells (MSCBif) from the bone marrow of healthy human donors and engineered the cells to release a protein that binds to the death receptors and initiates cell death. They also built a safety switch into the stem cell system that allows tracking stem cells by PET imaging and, when activated, eradicates stem cells and further enhances cancer cell death. Finally, Shah’s team assessed the efficacy of this therapeutic in animal models of primary and recurrent GBM tumors post-surgery.

Notably, all mice that received the gel encapsulated stem cell-based therapeutic after surgery were still alive 90 days post-treatment, compared to mice that solely underwent surgery, which exhibited a mean survival time of 55 days. Investigators additionally assessed the safety of this clinical treatment by conducting several studies using different doses of the MSC therapy on mice. They found no signs of toxicity among mice with or without tumors.

The study’s findings pave a pathway to clinical testing in phase I clinical trials in patients with GBM undergoing brain surgery within next two years. Shah and colleagues note that this therapeutic strategy will be applicable to a wider range of solid tumors and that further investigations of its applications are warranted.

“Beyond this therapy’s significant exhibited success rate, these findings suggest that we can use stem cells from healthy individuals to treat cancer patients,” said Shah. “This work lays down a foundation to begin building an engineered therapeutic stem cell biobank targeting different receptors on tumor cells and the immune cells in the tumor microenvironment that we will one day be able to use to treat a wide range of difficult-to-treat cancers like GBM.” 

Reference: Bhere D, Choi SH, van de Donk P, et al. Target receptor identification and subsequent treatment of resected brain tumors with encapsulated and engineered allogeneic stem cells. Nat. Commun. 2022;13(1):2810. doi: 10.1038/s41467-022-30558-3

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

source

Share:

More Posts

Market Research

Pulse Surveys

Turn feedback into action

Our survey platform makes it easy to measure and understand feedback so you can drive growth and innovation

Pulse Handshak

Pulse Handshak

Collaborative online survey tool for the market research industry. Remote assisted surveying just like face-to-face interviews. Here interviewers can talk to the respondent over the web-console without the need for any other communication channel and share the same Q're with responses and click actions.

Pulse FE

Pulse FE

Pulse Field Expert or Pulse FE is the main platform for both offline and online survey at softofficepro.com. It is robust and used by hundreds of clients over tens of years with millions of responses. Do it once Q're and deploy on both offline devices (android) and online forms makes it a great cost effective platform for any kind of responses

Pulse Ultimate

Pulse Ultimate

Pulse Ultimate is targeted for tracking studies and retail audits. An offline survey system offering extreme field control including processes like data quality check, back-check, rework, comparison with previous wave data etc. helps to get the best results on a day-to-day basis

Pulse LS

Pulse LS

Use a managed Limesurvey and our expertise for creating complex forms and token based user management. Use optional mailing system to send survey invitation to each participant and track progress of the response status. Industry standard SPSS / R output supported