Scavenger nanoparticles could advance fuel cell tech – The Engineer

Researchers at the University of Illinois Chicago have developed a material that could pave the way for future fuel cell powered vehicles.
Fuel cell technology relies on catalyst-driven chemical reactions to create energy. Lithium batteries can typically achieve a range of 100-300 miles on one charge, but are also vulnerable to the high cost of cathode materials and manufacturing, and require several hours to charge.
Alternatively, fuel cell systems take advantage of abundant elements such as oxygen and hydrogen and can achieve more than 400 miles on a single charge which can be done in under five minutes. The catalysts used to power their reactions are made of materials that are either too expensive (e.g platinum) or too quickly degraded to be practical.
US scientists have now reportedly developed an additive material that allows for a more durable, inexpensive iron-nitrogen-carbon fuel cell catalyst.
When added to the chemical reactions, researchers said the additive material protects fuel cell systems from two of its most corrosive by-products: unstable particles like atoms, molecules or free radicals and hydrogen peroxide.
Late Great Engineers: Geoffrey Ballard – fuel cell visionary
Study to assess fuel cells for fire engines
Reported in Nature Energy, the team’s work involved using advanced imaging techniques to investigate the reactions with the material, an additive comprised of tanatlum-titanium oxide nanoparticles that scavenge and deactivate the free radicals. High-resolution imaging of the atomic structures allowed the scientists to define the structural parameters needed for the additive to work.
“In our lab, we are able to use electron microscopy to capture highly detailed, atomic-resolution images of the materials under a variety of service conditions,” said study co-corresponding author Reza Shahbazian-Yassar, professor of mechanical and industrial engineering at the UIC College of Engineering. 
“Through our structural investigations, we learned what was happening in the atomic structure of additives and were able to identify the size and dimensions of the scavenger nanoparticles, the ratio of tantalum and titanium oxide. This led to an understanding of the correct state of the solid solution alloy required for the additive to protect the fuel cell against corrosion and degradation.”
Experiments revealed that a solid solution of tantalum and titanium oxide is required and that the nanoparticles should be around five nanometres. They also revealed that a 6-4 ratio of tantalum to titanium oxide is required. Shahbazian-Yassar said that the ratio was key to the radical scavenging properties of the nanoparticle material, and the solid-state solution helped sustain the environment’s structure.
When the scavenger nanoparticle material was added to the reactions of fuel cell systems, hydrogen peroxide yield was suppressed to less than two per cent — a 51 per cent reduction — and current density decay of fuel cells was reduced from 33 per cent to only three per cent, researchers confirmed.
Visit the UK’s dedicated jobsite for engineering professionals. Each month, we’ll bring you hundreds of the latest roles from across the industry.

Threaded commenting powered by interconnect/it code.

Copyright © Mark Allen Engineering Ltd (a Mark Allen Group company) 2019
Mark Allen Engineering Limited
Registered Office: Mark Allen Group, St Jude’s Church, Dulwich Road, London, SE24 0PB
Registered in England No. 11569365

source

Share:

More Posts

Market Research

Pulse Surveys

Turn feedback into action

Our survey platform makes it easy to measure and understand feedback so you can drive growth and innovation

Pulse Handshak

Pulse Handshak

Collaborative online survey tool for the market research industry. Remote assisted surveying just like face-to-face interviews. Here interviewers can talk to the respondent over the web-console without the need for any other communication channel and share the same Q're with responses and click actions.

Pulse FE

Pulse FE

Pulse Field Expert or Pulse FE is the main platform for both offline and online survey at softofficepro.com. It is robust and used by hundreds of clients over tens of years with millions of responses. Do it once Q're and deploy on both offline devices (android) and online forms makes it a great cost effective platform for any kind of responses

Pulse Ultimate

Pulse Ultimate

Pulse Ultimate is targeted for tracking studies and retail audits. An offline survey system offering extreme field control including processes like data quality check, back-check, rework, comparison with previous wave data etc. helps to get the best results on a day-to-day basis

Pulse LS

Pulse LS

Use a managed Limesurvey and our expertise for creating complex forms and token based user management. Use optional mailing system to send survey invitation to each participant and track progress of the response status. Industry standard SPSS / R output supported