Improved Methods for Micro-Organosphere Generation Developed – Technology Networks

We’ve updated our Privacy Policy to make it clearer how we use your personal data.
We use cookies to provide you with a better experience. You can read our Cookie Policy here.
Complete the form below and we will email you a PDF version of “Improved Methods for Micro-Organosphere Generation Developed”
A team of scientists, led by Xiling Shen, Ph.D., Chief Scientific Officer, and Professor at the Terasaki Institute for Biomedical Innovation (TIBI), has reached new levels in patient model development. They have developed improved methods for generating micro-organospheres (MOS) and have shown that these MOS have superior capabilities for a variety of clinical uses. As documented in a recent publication in Stem Cell Reports, their MOS can be used as patient avatars for studies involving direct viral infection, immune cell penetration and high-throughput therapeutic drug screening, something that is not obtainable with conventional patient-derived models.

Dr. Shen’s team has developed emulsion microfluidic technology for creating MOS, tiny, nanoliter-sized basal membrane extract (BME) droplets composed of tissue cell mixtures which can be generated at a rapid pace from an automated device. After the droplets are created, excess oil is removed by an innovative membrane demulsification process, leaving behind thousands of viscous, uniformly sized droplets which contain tiny 3D tissue structures.

The team went on to demonstrate unique MOS capabilities and features in several first-of-its-kind experiments. They were able to show that the MOS could be created from a variety of different tissue sources and the resultant MOS had retention of histopathological morphology, capacity for differentiation and genetic expression, and the ability to be frozen and sub-cultured, as in conventional organoids.

Experiments were conducted to test the ability to infect MOS with viruses. Unlike with conventional organoids, MOS can be directly infected with viruses without the removal and suspension of cells from its surrounding BME scaffold, hence recapitulating the process of viral infection of the host tissue. Dr. Shen’s team was able to create a MOS atlas of human respiratory and digestive tissues from patient autopsies and infect them with SARS-COV-2 viruses, followed by drug screening to identify drugs that block viral infection and replication within those tissues.

MOS also provide a unique platform for studying and developing immune cell therapy. Within natural diffusion limit of vascularized tissue, tumor-derived MOS allowed sufficient penetration by therapeutic immune T-cells such as CAR-T, enabling a novel T cell potency assay to assess tumor killing by the engineered T-cells. Such a model would be highly useful in investigating tumor responsiveness and in developing anti-tumor immune cell therapies.

MOS could be further integrated with deep-learning imaging analysis for rapid drug testing of small and heterogeneous clinical tumor biopsies. Moreover, the algorithm was able to distinguish cytotoxic vs. cytostatic drug effects and drug-resistant clones that will give rise to later relapse. This groundbreaking capability will pave the way for MOS to be used in the clinic to inform therapeutic decisions.

“Dr. Shen and his team continue to refine and improve upon the MOS technology and to spotlight its versatility, not only as a physiological model for screening potential personalized treatments, but for disease studies and a variety of other applications as well,” said Ali Khademhosseini, Ph.D., TIBI’s Director and CEO. “It looks to be the wave of the future for precision medicine.”

Reference: Wang Z, Boretto M, Millen R, et al. Rapid tissue prototyping with micro-organospheres. Stem Cell Rep. 2022;0(0). doi: 10.1016/j.stemcr.2022.07.016

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.



More Posts

Market Research

Pulse Surveys

Turn feedback into action

Our survey platform makes it easy to measure and understand feedback so you can drive growth and innovation

Pulse Handshak

Pulse Handshak

Collaborative online survey tool for the market research industry. Remote assisted surveying just like face-to-face interviews. Here interviewers can talk to the respondent over the web-console without the need for any other communication channel and share the same Q're with responses and click actions.

Pulse FE

Pulse FE

Pulse Field Expert or Pulse FE is the main platform for both offline and online survey at It is robust and used by hundreds of clients over tens of years with millions of responses. Do it once Q're and deploy on both offline devices (android) and online forms makes it a great cost effective platform for any kind of responses

Pulse Ultimate

Pulse Ultimate

Pulse Ultimate is targeted for tracking studies and retail audits. An offline survey system offering extreme field control including processes like data quality check, back-check, rework, comparison with previous wave data etc. helps to get the best results on a day-to-day basis

Pulse LS

Pulse LS

Use a managed Limesurvey and our expertise for creating complex forms and token based user management. Use optional mailing system to send survey invitation to each participant and track progress of the response status. Industry standard SPSS / R output supported