Flexibility is key when navigating the future of 6G – MIT Technology Review

Sponsored
The paradigm shift ushered in by 6G will require innovating testing approaches that can adapt to the evolving definition of "next-next-generation."
In association withKeysight
Mobile providers are accelerating their rollout of the flexible, low-latency, multi-gigabit-per-second communications network known as 5G. The technology promises to deliver not just faster data rates, but a more flexible and programmable network. This will be combined with the high reliability and low latency required to create secure, reliable wireless ecosystems to benefit industries beyond traditional smartphone use-models like manufacturing, transportation, and healthcare.
As many of us are just becoming familiar with the benefits of 5G, technology and communications companies are looking ahead to the next generation, 6G. Although the actual job description of 6G is still being written, the hopes for the technology are to enable a pervasive, seamless internet of things that connects not only people’s devices to the network, but allows sensors, vehicles, and many other products and technologies to communicate with each other seamlessly and reliably. For example, having vehicles that can not only communicate to the cloud, but to each other will result in more efficient traffic and safer travel, proponents say.
“6G is not defined, so a great degree of flexibility is needed to help companies navigate potential changes of direction,” says says Greg Jue, a 6G system engineer at Keysight Technologies, a testbed provider for advanced technologies. “They require flexibility in being able to change the product, shift development, and then be able to test the new platform.”
The differences between 5G and 6G are not just about what collection of bandwidths will make up 6G in the future and how users will connect to the network, but also about the intelligence built into the network and devices. “The collection of networks that will create the fabric of 6G must work differently for an augmented reality (AR) headset than for an e-mail client on a mobile device,” says Shahriar Shahramian, a research lead with Nokia Bell Laboratories. “Communications providers need to solve a plethora of technical challenges to make a variety of networks based on different technologies work seamlessly,” he says. Devices will have to jump between different frequencies, adjust data rates, and adapt to the needs of the specific application, which could be running locally, on the edge of the cloud, or on a public service.
 “One of the complexities of 6G will be, how do we bring the different wireless technologies together so they can hand off to each other, and work together really well, without the end user even knowing about it,” Shahramian says. “That handoff is the difficult part.”
Although the current 5G network allows consumers to experience more seamless handoffs as devices move through different networks—delivering higher bandwidth and lower latency—6G will also usher in a self-aware network capable of supporting and facilitating emerging technologies that are struggling for a foothold today—virtual reality and augmented reality technologies, for example, and self-driving cars. Artificial intelligence and machine learning technology, which will be integrated into 5G as that standard evolves into 5G-Advanced, will be architected into 6G from the beginning to simplify technical tasks, such as optimizing radio signals and efficiently scheduling data traffic.
“Eventually these [technologies] could give radios the ability to learn from one other and their environments,” two Nokia researchers wrote in a post on the future of AI and ML in communications networks. “Rather than engineers telling … nodes of the network how they can communicate, those nodes could determine for themselves—choosing from millions of possible configurations—the best possible to way to communicate.”
Although this technology is still nascent, it is complex, so it’s clear that testing will play a critical role in the process. “The companies creating the testbeds for 6G must contend with the simple fact that 6G is an aspirational goal, and not yet a real-world specification,” says Jue. He continues, “The network complexity needed to fulfill the 6G vision will require iterative and comprehensive testing of all aspects of the ecosystem; but because 6G is a nascent network concept, the tools and technology to get there need to be adaptable and flexible.”
Even determining which bandwidths will be used and for what application will require a great deal of research. Second- and third-generation cellular networks used low- and mid-ranged wireless bands, with frequencies up to 2.6GHz. The next generation, 4G, extended that to 6Ghz, while the current technology, 5G, goes even further, adding so-called  “mmWave” (millimeter wave) up to 71GHz.
To power the necessary bandwidth requirements of 6G, Nokia and Keysight are partnering to investigate the sub-terahertz spectrum for communication, which raises new technical issues. Typically, the higher the frequency of the cellular spectrum, the wider the available contiguous bandwidths, and hence the greater the data rate;  but this comes at the cost of decreased range for a particular strength of signal. Low-power wi-fi networks using the 2.6Ghz and 5Ghz bands, for example, have a range in tens of meters, but cellular networks using 800Mhz and 1.9Ghz, have ranges in kilometers. The addition of 24-71GHz in 5G means that associated cells are even smaller (tens to hundreds of meters). And for bands above 100GHz, the challenges are even more significant.
“That will have to change,” says Jue. “One of the new key disruptors for 6G could be the move from the millimeter bands used in 5G, up to the sub-terahertz bands, which are relatively unexplored for wireless communication,” he says. “Those bands have the potential to offer broad swaths of spectrum that could be used for high data-throughput applications, but they present a lot of unknowns as well.”
Adding sub-terahertz bands to the toolbox of wireless communications devices could open up massive networks of sensing devices, high-fidelity augmented reality, and locally networked vehicles, if technology companies can overcome the challenges.
In addition to different spectrum bands, current ideas for the future 6G network will have to make use of new network architectures and better methods of security and reliability. In addition, the devices will need extra sensors and processing capabilities to adapt to network conditions and optimize communications. To do all of this, 6G will require a foundation of artificial intelligence and machine learning to manage the complexities and interactions between every part of the system.
“Every time you introduce a new wireless technology, every time you bring in new spectrum, you make your problem exponentially harder,” Nokia’s Shahramian says.
Nokia expects to start rolling out 6G technology before 2030. Because the definition of 6G remains fluid, development and testing platforms need to support a diversity of devices and applications, and they must accommodate a wide variety of use cases. Moreover, today’s technology may not even support the requirements necessary to test potential 6G applications, requiring companies like Keysight to create new testbed platforms and adapt to changing requirements.
Simulation technology being developed and used today, such as digital twins, will be used to create adaptable solutions. The technology allows real-world data from physical prototypes to be integrated back into the simulation, resulting in future designs that work better in the real world.
“However, while real physical data is needed to create accurate simulations, digital twins would allow more agility for companies developing the technology,” says Keysight’s Jue.
Simulation helps avoid many of the interative, and time-consuming, design steps that can slow down development that relies on successive physical prototypes.
“Really, kind of the key here, is a high degree of flexibility, and helping customers to be able to start doing their research and their testing, while also offering the flexibility to change, and navigate through that change, as the technology evolves,” Jue says. “So, starting design exploration in a simulation environment and then combining that flexible simulation environment with a scalable sub-THz testbed for 6G research helps provide that flexibility.”
Nokia’s Shahramian agrees that this is a long process, but the goal is clear For technology cycles, a decade is a long loop. For the complex technological systems of 6G, however, 2030 remains an aggressive goal. To meet the challenge, the development and testing tools must match the agility of the engineers striving to create the next network. The prize is significant—a fundamental change to the way we interact with devices and what we do with the technology.”
This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.
If Russia disconnects from—or is booted from— the internet’s governing bodies, the internet may never be the same again for any of us.
Companies are finally shifting away from notoriously insecure alphanumerics to other methods of authentication.
Quantum computing startups are all the rage, but it’s unclear if they’ll be able to produce anything of use in the near future.
A decade-long quest to become a cyber superpower is paying off for China.
Discover special offers, top stories, upcoming events, and more.
Thank you for submitting your email!
It looks like something went wrong.
We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.
Our in-depth reporting reveals what’s going on now to prepare you for what’s coming next.
Subscribe to support our journalism.
© 2022 MIT Technology Review

source

Share:

More Posts

Market Research

Pulse Surveys

Turn feedback into action

Our survey platform makes it easy to measure and understand feedback so you can drive growth and innovation

Pulse Handshak

Pulse Handshak

Collaborative online survey tool for the market research industry. Remote assisted surveying just like face-to-face interviews. Here interviewers can talk to the respondent over the web-console without the need for any other communication channel and share the same Q're with responses and click actions.

Pulse FE

Pulse FE

Pulse Field Expert or Pulse FE is the main platform for both offline and online survey at softofficepro.com. It is robust and used by hundreds of clients over tens of years with millions of responses. Do it once Q're and deploy on both offline devices (android) and online forms makes it a great cost effective platform for any kind of responses

Pulse Ultimate

Pulse Ultimate

Pulse Ultimate is targeted for tracking studies and retail audits. An offline survey system offering extreme field control including processes like data quality check, back-check, rework, comparison with previous wave data etc. helps to get the best results on a day-to-day basis

Pulse LS

Pulse LS

Use a managed Limesurvey and our expertise for creating complex forms and token based user management. Use optional mailing system to send survey invitation to each participant and track progress of the response status. Industry standard SPSS / R output supported