Endothelial Cell Signaling May Drive Liver Cancer Progression – Technology Networks

We’ve updated our Privacy Policy to make it clearer how we use your personal data.
We use cookies to provide you with a better experience. You can read our Cookie Policy here.
Complete the form below and we will email you a PDF version of “Endothelial Cell Signaling May Drive Liver Cancer Progression”
A team of researchers from the College of Design and Engineering, the N.1 Institute for Health and the Cancer Science Institute of Singapore at the National University of Singapore has recently engineered in vitro tumour models to better understand the crosstalk between liver cancer cells and their microenvironment. Using lab-grown mini liver tumours co-cultured with endothelial cells – these are cells that form the lining of blood vessels – to conduct their study, the research team investigated the role of endothelial cells in liver cancer progression.

“The conventional understanding is that endothelial cells are structural cells that form blood vessels. Our latest findings suggest that these cells also give ‘instructions’ to liver cancer cells to increase the production of a protein called CXCL1, which is associated with poor survival outcome in liver cancer patients,” explained Assistant Professor Eliza Fong, who led the research study.

CXCL1 is a type of chemokine, which are signalling proteins secreted by cells to regulate the infiltration of different immune cells into tumours. Hence, these molecules affect tumour immunity and may influence therapeutic outcomes in patients.

“Our results pave the way for new therapeutic targets to control tumour development, and further our team’s understanding of the mechanisms behind the progression of liver cancer,” Dr. Toh Tan Boon added, who is also a key member of the research team.

The team’s results were published in the journal Biomaterials on 16 April 2022.
Hepatocellular carcinoma (HCC) is the sixth most commonly occurring cancer and remains the second leading cause of cancer worldwide. While several therapeutics have been approved in the recent years to treat advanced HCC, the impact of anti-angiogenic treatment on the overall survival of HCC patients remains elusive.

Previous studies have shown that tumour growth is facilitated by a biological process called angiogenesis (the development of blood vessels) which provides the tumour with oxygen and nutrients to grow. Unfortunately, the benefits of angiogenesis inhibitors are only temporary, following which the tumour resumes growth.

To find new therapeutic targets to better control tumour development, the NUS team decided to study the role of endothelial cells in cancer development using engineered in vitro tumour models.

Unlike previously reported models that rely on the use of immortalised cancer cell lines, the NUS team incorporated patient-derived xenograft organoids and endothelial cells in their new model, which led the team to their significant discovery.

“We found that the ‘communication’ between liver cancer cells and endothelial cells contribute to the generation of macrophages. These immune cells are pro-inflammatory and pro-angiogenesis, potentially creating a very conducive microenvironment for tumour expansion,” explained Associate Professor Edward Chow, also a key member on the research team.
This latest study, which is a continuation from their previous work in 2018, highlight the significance of setting up such complex co-cultures to better understand the liver cancer milieu.

Importantly, these co-culture models may be useful for drug development studies looking to target liver cancer and can also serve as valuable platforms to better understand how inflammation is promoted in liver cancer, and how it contributes to cancer progression.

Moving forward, the research team hopes to leverage their practical knowledge to set up such co-cultures and extend this area of expertise to other cancer types. Their research work will provide an enhanced road map for the study of cancer-endothelial crosstalk.

Reference: Lim JTC, Kwang LG, Ho NCW, et al. Hepatocellular carcinoma organoid co-cultures mimic angiocrine crosstalk to generate inflammatory tumor microenvironment. Biomaterials. 2022;284:121527. doi: 10.1016/j.biomaterials.2022.121527

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.



More Posts

Market Research

Pulse Surveys

Turn feedback into action

Our survey platform makes it easy to measure and understand feedback so you can drive growth and innovation

Pulse Handshak

Pulse Handshak

Collaborative online survey tool for the market research industry. Remote assisted surveying just like face-to-face interviews. Here interviewers can talk to the respondent over the web-console without the need for any other communication channel and share the same Q're with responses and click actions.

Pulse FE

Pulse FE

Pulse Field Expert or Pulse FE is the main platform for both offline and online survey at softofficepro.com. It is robust and used by hundreds of clients over tens of years with millions of responses. Do it once Q're and deploy on both offline devices (android) and online forms makes it a great cost effective platform for any kind of responses

Pulse Ultimate

Pulse Ultimate

Pulse Ultimate is targeted for tracking studies and retail audits. An offline survey system offering extreme field control including processes like data quality check, back-check, rework, comparison with previous wave data etc. helps to get the best results on a day-to-day basis

Pulse LS

Pulse LS

Use a managed Limesurvey and our expertise for creating complex forms and token based user management. Use optional mailing system to send survey invitation to each participant and track progress of the response status. Industry standard SPSS / R output supported